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Quantum entropy and polarization measurements of the two-photon system
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We consider the bipartite state of a two-photon polarization system and obtain the exact analytical expression for
the von Neumann entropy in the particular case of a five-parameter polarization density matrix. We investigate
and graphically illustrate the dependence of the entropy on these five parameters, in particular, the existence
of exotic, transition from exotic to nonexotic, and nonexotic states, where the quantum conditional entropy is
negative, both positive and negative, and positive, respectively. We study the “cooling” or “heating” effect that
follows from the reduced density of photon 2 when a measurement is performed on photon 1.
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I. INTRODUCTION

The philosophical implications of the superposition prin-
ciple of quantum mechanics and quantum inseparability have
profound effects on our understanding of the physical aspect
of nature, which differs drastically from that provided by
classical mechanics [1]. Quantum entanglement or quantum
inseparability is essential for quantum information commu-
nication and processing protocols in quantum cryptography
[2], dense coding [3], teleportation [4], and entanglement
swapping [5], which can be used to realize quantum repeaters
[6]. Entanglement can be achieved via two interacting quantum
systems [7] or by an appropriate joint measurement of two
systems [8].

In handling quantum information, the notion of quantum
noise or decoherence enters as an unwanted interaction with
the outside world. Here we deal with the dynamics of a closed
quantum system and study the polarization of a two-photon
system and measurements performed on the system. We show
the existence of exotic states and their transition into nonexotic
states (and vice versa) by suitably tuning the parameters, which
is interesting in some aspects of quantum computation and
quantum information. Several authors have studied how to
protect coherence and thus control dissipation [9–13].

The role of the von Neumann entropy [14] has gained
importance in recent years owing to the extensive development
of the physics of entangled quantum states. Entropy plays a
fundamental role as a quantitative measure of entanglement
[15,16]. Accordingly, any exact result of the von Neumann
entropy for a correlated quantum system is of extreme impor-
tance. In this paper, we consider the bipartite system of a pair
of photons and exactly calculate the general expression for the
von Neumann entropy for correlated, polarized states [17,18].
The generalized conditional entropy has been analyzed for this
system [19] for which knowledge of the eigenvalues of the
density matrix is not required.

Correlation transfer from one-photon to two-photon sys-
tems, not in any restricted subspace but in the complete space
of the polarization degree of freedom, has been studied [20].
Three protocols for directly measuring the concurrence of

two-photon polarization-entangled states, including pure states
and mixed states has been considered [21]. An experimentally
realizable scheme for manipulating the entanglement of an
arbitrary state of two polarization-entangled qubits has been
introduced, where the von Neumann entropy provides a con-
venient and useful measure of the purity of the state [22].

We investigate the nature of the reduced density matrix of
photon 2 after a measurement is performed on photon 1. This
measurement gives rise to a “cooling” (“heating”) effect of
photon 2 if the final entropy of photon 2 is less (greater) than
the single-photon entropy.

This paper is arranged as follows. In Sec. II, we review
the conditional quantum entropy used in quantum information
theory. In Sec. III, we consider the general expression for the
von Neumann entropy for two photons. In Sec. IV, we study
the four eigenvalues for the two-photon polarization density
matrix. In Sec. V, we study two-photon correlations for a five-
parameter family of density matrices and obtain results for the
entropy for three models that illustrate a wide-ranging behavior
of the von Neumann entropy. In particular, the transition from
negative to positive values of the quantum conditional entropy
as a function of the photon Stokes parameter, viz., the transition
from exotic to nonexotic states as well as the existence of
strictly exotic and nonexotic states. In Sec. VI, we consider
a measurement of one of the photons with an analyzer and the
corresponding effect that this measurement has on the reduced
entropy of the second photon. Finally, Sec. VII summarizes
our results.

II. QUANTUM CONDITIONAL ENTROPY

Quantum conditional entropy is defined by [23]

S(ρ̂(1)|ρ̂(2)) = S(ρ̂(1,2)) − S(ρ̂(2)), (1)

while quantum mutual information by

S(ρ̂(1) : ρ̂(2)) = S(ρ̂(1)) + S(ρ̂(2)) − S(ρ̂(1,2)), (2)

where S(ρ̂(1,2)) is the joint entropy for the composite system
and S(ρ̂(i)) is the entropy of the ith component, i = 1,2. Hence-
forth, S ≡ S(ρ̂(1,2)) and Si ≡ S(ρ̂(i)). For entangled states, one
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has the entropic inequality [24]

S < Si. (3)

However, there are entangled states which do not exhibit this
exotic property (3) but rather satisfy the inequality S � Si

Quantum conditional entropy is an entropy measure used
in quantum information theory. An important feature of the
quantum conditional entropy in Eq. (1) is that it can assume
negative values [25], that is, the subsystems of the entangled
system can exhibit more disorder than the system as a whole
[26]. The negativity of quantum conditional entropy is a
sufficient criterion for quantum inseparability and gives the
additional number of bits above the classical limit that can be
transmitted in a quantum dense coding protocol.

Conditional entropy with a minus sign is known as the
coherent information and is a fundamental quantity responsible
for the capability of transmission of quantum information.
The classical analog of conditional entropy indicates that the
Shannon entropy of a single random variable is never larger
than the Shannon entropy of two variables [24]. Accordingly,
a negative quantum conditional entropy is a definite signature
of quantum-entangled states.

III. VON NEUMANN ENTROPY
FOR TWO-PHOTON SYSTEM

The general form of the normalized polarization density
matrix for two photons [17,18] is given by

ρ̂(1,2) = (1/4)

⎛
⎝Î (1) ⊗ Î (2) + ξ̂

(1) · σ̂ (1) ⊗ Î (2)

+ Î (1) ⊗ ξ̂
(2) · σ̂ (2) +

∑
i,j

ζij σ̂
(1)
i ⊗ σ̂

(2)
j

⎞
⎠, (4)

where Î (1),Î (2) and σ̂ (1),σ̂ (2) are 2×2 Pauli vector matrices
acting in the polarization space of photons, and the real di-
mensionless quantities ξ (1),ξ (2),ζij (i,j = 1,2,3) are functions
of the photon momenta and of the parameters of the emitting
system. The dimensionless vectors ξ (1,2) are the Stokes vectors
of photons 1,2, respectively, while the parameter ζij describes
the two-photon polarization correlation. In the case of no
photon entanglement, one has that

ζij = ξ
(1)
i ξ

(2)
j . (5)

Generally, the Stokes parameters ξ̂
(1,2)

and ζij satisfy the
inequalities [18]∣∣ξ (1)

i + ξ
(2)
j

∣∣ − 1 � ζij �
∣∣ξ (1)

i − ξ
(2)
j

∣∣ + 1, (6)

ξ̂
(1) · ξ̂

(1) + ξ̂
(2) · ξ̂

(2) +
∑
i,j

ζ 2
ij � 3. (7)

The reduced density matrix for photon 1, viz., ρ̂(1), is
obtained by taking the trace of Eq. (4) over the quantum states
of photon 2, which gives us the Stokes matrix of photon 1,

ρ̂(1) = Tr2 ρ̂(1,2) = (1/2)[Î (1) + ξ̂
(1) · σ̂ (1)]. (8)

Similarly, by taking a trace of Eq. (4) over the quan-
tum states of photon 1, one obtains the Stokes matrix of

photon 2, viz., ρ̂(2),

ρ̂(2) = Tr1 ρ̂(1,2) = (1/2)[Î (2) + ξ̂
(2) · σ̂ (2)]. (9)

The goal of our paper is to calculate the von Neumann
entropy [14]

S(ρ̂(1,2)) = −Tr(ρ̂(1,2) ln ρ̂(1,2)) (10)

of the two-photon system in a mixed quantum state, that is,
when

ρ̂2 �= ρ̂.

Araki and Lieb [27] have proven that

|S1 − S2| � S � S1 + S2, (11)

whereS1,S2 are the reduced von Neumann entropies of photons
α = 1,2

Sα = ln 2 − (1/2) ln[(1 − ξ (α))1−ξ (α)
(1 + ξ (α))1+ξ (α)

], (12)

where ξ (α) is the magnitude of the Stokes vector ξ̂
(α)

.
The entropy Sα is a monotonically decreasing function

of the Stokes parameter for 0 � ξ (α) � 1 and achieves its
maximum value ln 2 for the completely unpolarized state when
ξ (α) = 0 and its minimum value zero when the photon is in a
pure polarized state, viz., ξ (α) = 1.

IV. ENTROPY FOR TWO-PHOTON
POLARIZATION DENSITY

The arbitrary polarization state of the photon pair (4) is
described by 15 real parameters [18] and owing to the Araki-
Lieb inequality (11), the maximum entropy attainable is

Smax = 2 ln 2 (13)

when all 15 parameters are set equal to zero. That is to say,
there are no correlations of any kind, neither individually nor
for the pair of photons.

The eigenvalue equation of matrix (4) is

λ4 − λ3 + c2λ
2 − c1λ + c0 = 0, (14)

where the coefficients are defined as follows:

c2 = (1/8)p,

c1 = (1/16)

⎡
⎣p − 2(1 −

∑
i,j

ξ
(1)
i ζij ξ

(2)
j + det ζ̂ )

⎤
⎦, (15)

c0 = det ρ̂(1,2).

In Eq. (15), p is a non-negative number [see Eq. (7)] which is
called the purity of the state [28]

p = 3 − ξ̂
(1) · ξ̂

(1) − ξ̂
(2) · ξ̂

(2) −
∑
i,j

ζ 2
ij (16)

and describes the “distance” of the mixed state of the system
from the pure state where p = 0 [17,18].

The four non-negative solutions λj (j = 1, . . . ,4) of
Eq. (14) yield the von Neumann entropy

S = −
∑

j

λj ln λj . (17)
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The roots of the quartic equation (14), with coefficients given
by Eq. (15), are extremely awkward to write and thus the
exact expression for the entropy (17) would not be too useful.
Accordingly, we consider special cases of Eq. (4) that lead to
the quartic form in Eq. (14) being reduced to the product of
two quadratic polynomials.

V. PHOTON CORRELATIONS

We consider the special case of the density matrix (4) which
contains the main properties of the two-photon system and
which is easier to handle mathematically than the general case
that includes all 15 real parameters. Namely, we consider the
case where the 15 real parameters are reduced to actually five.

ρ̂(1,2) = (1/4)

(
Î (1) ⊗ Î (2) + ξ

(1)
3 σ̂

(1)
3 ⊗ Î (2)

+ ξ
(2)
3 Î (1) ⊗ σ̂

(2)
3 +

∑
i

ζii σ̂
(1)
i ⊗ σ̂

(2)
i

)
, (18)

where the five parameters satisfy inequalities (6) and (7):

−1 � ζ11,22 � 1, (19)∣∣ξ (1)
3 + ξ

(2)
3

∣∣ − 1 � ζ33 �
∣∣ξ (1)

3 − ξ
(2)
3

∣∣ + 1, (20)

−1 � ξ
(1)
3 , ξ

(2)
3 � 1, (21)

and

ξ
(1)2
3 + ξ

(2)2
3 +

∑
i

ζ 2
ii � 3. (22)

The density matrix (18) describes interesting polarization
states of the pair of photons, that is, from the completely
unpolarized state to that of the pure polarized state as defined in
[18], and represents entangled photons provided Eq. (5) does
not hold true for at least one of the ζij . All three examples that
follow represent strictly nonseparable density matrices.

The eigenvalue equation (14) factors into the product of two
quadratic polynomials and the eigenvalues are given by

λ1,2 = 1
4 (1 + ζ33 ± x+),

λ3,4 = 1
4 (1 − ζ33 ± x−), (23)

where

xν = [(
ξ

(1)
3 + νξ

(2)
3

)2 + (ζ11 − νζ22)2
]1/2

, (ν = ±).
(24)

One obtains for the entropy (17) the expression

S = Smax − 1

4

∑
ν = ±

ln[(1 + νζ33 + xν)1+νζ33+xν

× (1 + νζ33 − xν)1+νζ33−xν ]. (25)

Entropy (25) depends on the three quantities ζ33, x−, and x+.
The requirement that the eigenvalues in Eq. (23) be real positive
quantities in order to give rise to a real valued entropy implies
that

−1 � ζ33 � 1, (26)

and

−1 ∓ ζ33 � x± � 1 ± ζ33. (27)

Note that the general expression for entropy (25) is a function
of the three variables ζ33, x−, and x+. For definiteness, we
consider ζ33 � 0. Entropy (25) assumes its maximum value
2 ln 2 when

ζ33 = x− = x+ = 0 (28)

(completely unpolarized state) and it assumes the value of zero
(pure state of two-photon polarization) when

ζ33 = 1, x− = 0, x+ = 2. (29)

The requirement of non-negative values for the eigenvalues
λ1, . . . ,λ4 is also satisfied provided

1 � p/2 + ζ 2
33, (30)

|q| � p/2 + ζ 2
33 − 1, (31)

where q is defined by

q = ξ 3
(1)ξ 3

(2) − ζ33 − ζ11ζ22. (32)

The parameter q also describes the purity of the two-photon
polarization state given by the density matrix (18), which is
equal to zero for pure polarized states of the pair of photons
[18].

A. Nonexotic states in two-photon correlations

Consider the correlated density matrix

ρ̂(1,2) = (1/4)
(
Î (1) ⊗ Î (2) + ζ

[
σ̂

(1)
1 ⊗ σ̂

(2)
1 − σ̂

(1)
2 ⊗ σ̂

(2)
2

]
+ ζ33σ̂

(1)
3 ⊗ σ̂

(2)
3

)
, (33)

where the positivity of the eigenvalues requires that

−1 � ζ33 � 1, (34)

and

−(1 + ζ33)/2 � ζ � (1 + ζ33)/2. (35)

The von Neumann entropy (25) is

S(ζ,ζ33) = Smax − 1
2 ln(1 − ζ33)1−ζ33

− 1
4 ln[(1 + ζ33 + 2ζ )1+ζ33+2ζ

× (1 + ζ33 − 2ζ )1+ζ33−2ζ ]. (36)

The plot of the entropy (36) is shown in Fig. 1 where it
is evaluated for different values of ζ33. Note that the range of
values for ζ is restricted by the reality condition for the von
Neumann entropy, viz., 0 � ζ � (1 + ζ33)/2. The decrease of
the entropy for increasing values of ζ33, for fixed values of
ζ , is to be expected since increasing the value of ζ33 means
that the state of the two photons becomes less chaotic and
approaches the entropy associated with the reduced entropy
in Eq. (12).

Note that from the separability condition (3), it does not
follow that states that satisfy S � S1 are necessarily separable.
In fact, in Fig. 1, we have nonexotic (S > S1) entangled states.
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FIG. 1. Entropy (36) for ξ
(1)
3 = ξ

(2)
3 = 0 and ζ11 = −ζ22 = ζ ,

which gives x+ = 2|ζ | and x− = 0. Inequality (27) becomes 0 �
ζ33 � 1 and 0 � ζ � (1 + ζ33)/2. The values for ζ33 are as follows:
ζ33 = 0 (solid), ζ33 = 0.66 (dash-dot), ζ33 = 0.85 (dot), and ζ33 = 1.0
[single-photon entropy (12)] (dash).

B. Exotic to nonexotic transition in single-
and two-photon correlations

The previous example and the one below given by Eq. (40)
are in agreement with our common understanding of entropy
as a measure of the disorder of a system. In both these cases,
the entropy is a monotonically decreasing function of the
polarization. However, the system in this following second
example gives rise to a very different behavior of the entropy
as a function of polarization.

Suppose that two of the eigenvalues in Eq. (23) are set equal
to zero, viz., λ2 = λ4 = 0, and with ζ11 = ζ22 = ζ , then the
density matrix (18) becomes

ρ̂(1,2) = (1/4)
(
Î (1) ⊗ Î (2) + ξ

(1)
3 σ̂

(1)
3 ⊗ Î (2) + ξ

(2)
3 Î (1) ⊗ σ̂

(2)
3

+
√(

1 − ξ
(1)
3

)(
1 − ξ

(2)
3

)[
σ̂

(1)
1 ⊗ σ̂

(2)
1 + σ̂

(1)
2 ⊗ σ̂

(2)
2

]
+ (

ξ
(1)
3 + ξ

(2)
3 − 1

)
σ̂

(1)
3 ⊗ σ̂

(2)
3

)
. (37)

Entropy (25) for the density matrix (37) is

S
(
ξ

(1)
3 ,ξ

(2)
3

) = −ξ
(1)
3 + ξ

(2)
3

2
ln

(
ξ

(1)
3 + ξ

(2)
3

2

)

−
(

1 − ξ
(1)
3 + ξ

(2)
3

2

)
ln

(
1 − ξ

(1)
3 + ξ

(2)
3

2

)

= S1(ξ (1)
3 + ξ

(2)
3 ). (38)

FIG. 2. Two-photon entropy (38) as a function of ξ
(1)
3 for different

values of ξ
(2)
3 . The values are as follows: ξ

(1)
3 = ξ

(2)
3 (solid), ξ

(2)
3 = 0

(dash-dot), ξ (2)
3 = 0.1 (dot), ξ (2)

3 = 0.2 (long-dash), ξ (2)
3 = 0.4 (space-

dot), and ξ
(2)
3 = 1 − ξ − ξ

(1)
3 (dash). The dash plot corresponds to the

single-photon entropy of Eq. (12) which intersects the other graphs
at ξ

(1)
3 = (1 − ξ

(2)
3 )/2.

Note that the dependence of entropy (38) on the Stokes
parameters ξ

(1)
3 and ξ

(2)
3 is via their sum, while such is not

the case for the density matrix (37).
The case ξ

(1)
3 = ξ

(2)
3 = ξ , shown in Fig. 2 by the solid plot,

gives for the entropy (38)

S(ξ ) = −ξ ln(ξ ) − (1 − ξ ) ln(1 − ξ ), (39)

which is actually the binary entropy function h(ξ ) introduced
by Wootters [15] in the definition of the entanglement of
formation (EOF). Also, one obtains the reduced single-photon
entropy (12), dash plot in Fig. 2, for ξ

(1)
3 + ξ

(2)
3 = 1 − ξ .

Figure 2 shows the reduced single-photon entropy (12), dash
graph, together with the two-photon entropy (38) as a function
of the Stokes parameter for photon 1, ξ

(1)
3 , for various fixed

values of the Stokes parameter for photon 2, 0 � ξ
(2)
3 < 1.

The points of intersection between the dash plot and the other
plots represent the transition points whereby S(ξ (1)

3 ,ξ
(2)
3 ), as a

function of ξ
(1)
3 , goes from the region where S1 > S (exotic

states) to the region where S > S1 (nonexotic states), that is,
where the quantum conditional entropy (1) changes sign from
negative to positive.

C. Exotic states in single- and two-photon correlations

To find the role of the polarization states of the individual
photons in the entropy of the two-photon system, we consider
the case where the Stokes parameters ξ

(1)
3 = ξ

(2)
3 ≡ ξ �= 0

and the photon correlation parameters ζ11 = −ζ22 ≡ ζ , and
ζ33 = 1. The latter choice of parameters will allow the pure
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FIG. 3. Entropy (41) for ξ
(1)
3 = ξ

(2)
3 = ξ , ζ11 = −ζ22 = ζ , and

ζ33 = 1, which gives x+ = 2
√

ξ 2 + ζ 2 � 2 and x− = 0. The values
for ζ are as follows: ζ = 0 [single-photon entropy (12)] (dash),
ζ = 0.6 (dot), ζ = 0.8 (dash-dot), and ζ = 0.9 (solid).

state to be realized when ζ = 0 for ξ = 1 in the entropy (41)
given below. The corresponding density matrix is

ρ̂1,2 = (1/4)
(
Î (1) ⊗ Î (2) + ξ

[
σ̂

(1)
3 ⊗ Î (2) + Î (1) ⊗ σ̂

(2)
3

]
+ ζ

[
σ̂

(1)
1 ⊗ σ̂

(2)
1 − σ̂

(1)
2 ⊗ σ̂

(2)
2

] + σ̂
(1)
3 ⊗ σ̂

(2)
3

)
. (40)

The entropy is

S(ξ,ζ ) = Smax − 1
4 ln[(2 + x+)2+x+ (2 − x+)2−x+ ], (41)

where

x+ = 2
√

ξ 2 + ζ 2 � 2, (42)

and

0 � ξ � 1. (43)

As can be seen in Fig. 3, the two-photon entropy S(ξ,ζ )
mimics that of the single-photon entropy S1(ξ ), that is, the
single-photon entropy (12) decreases with increasing values of
ξ , while the two-photon entropy (41) decreases for given value
of ζ with increasing values of ξ or conversely. These results
indicate that once again one has exotic, entangled states since
S1(ξ ) > S(ξ,ζ ) for 0 � ξ �

√
1 − ζ 2; that is, the conditional

entropy is negative for these values of the parameters.

VI. ENTROPY AND MEASUREMENT

In this section, we consider the effect of photon polarization
measurements with the aid of an efficiency matrix and the
resulting reduction of the two-photon density matrix. Of
course, the change of the entropy of the two-photon system

FIG. 4. Photon reduced entropy (50) with magnitude of Eq. (52)
for ξ (2)′ . The values for ζ33 and n3 are as follows: ζ33 = 0, n3 = 0.5
(space-dash), single-photon entropy (12) (dash), ζ33 = 0.66, n3 = 0.5
(dash-dot), and ζ33 = 0.95, n3 = 0.5 (dot).

depends crucially on the particular measurement that is actu-
ally performed [1].

Three types of polarization measurements can be carried
out on the two-photon system:

(1) A standard measurement of two independent analyzers
is performed with the aid of the efficiency matrix of the
polarization filter [29] given by the direct product of the
Stokes matrices of the analyzers ε̂I = ρ̂1 ⊗ ρ̂2, where ρ̂i =
1
2 (Î (i) + ni · σ̂ (i)) and ni is a unit vector (i = 1,2). After the
measurement, one has a separable polarization state of the
pair of photons. The probability of reduction or correlation
parameter is then

wI = Tr(ε̂Iρ̂
(1,2))

= 1

4

⎛
⎝1 + n1 · ξ (1) + n2 · ξ (2) +

∑
i,j

ζij n1in2j

⎞
⎠. (44)

The probability wI is actually less than 1, owing to in-
equalities (6) and (7), means that this type of measurement
disturbs the system and reduction of the initial quantum state,
either a pure entangled or mixed state, takes place into a
pure polarization state and so the total entropy is zero. That
is to say, the entropy of the system decreases owing to the
measurement.

(2) Measurement with a two-photon analyzer where the
efficiency matrix of the polarization filter is coincident with
the density matrix (4) with 15 filter parameters for a pure

022326-5



MOORAD ALEXANIAN AND VANIK E. MKRTCHIAN PHYSICAL REVIEW A 97, 022326 (2018)

FIG. 5. Photon reduced entropy (50) with magnitude of Eq. (53)
for ξ (2)′ . The values of the Stokes parameters are set as follows: ξ (1)

3 =
ξ

(2)
3 = ξ . The values for n3 are as follows: n3 = 1 (dash-dot), n3 = 0.8

(space-dash), n3 = 0.5 (long-dash), and the single-photon entropy
(12) (dash).

polarization state, viz., ξ 1, ξ 2, and ζ
f

ij ,

ε̂II = (1/4)

⎛
⎝Î (1) ⊗ Î (2) + ξ 1 · σ̂ (1) ⊗ Î (2)

+ Î (1) ⊗ ξ 2 · σ̂ (2) +
∑
i,j

ζ
f

ij σ̂
(1)
i ⊗ σ̂

(2)
j

⎞
⎠. (45)

This two-photon analyzer reduces the initial two-photon po-
larization state to that of a pure polarization state for the
two-photon system determined by the 15 filter parameters. One
obtains for the probability wII of reducing the initial state to
the filtered state

wII = Tr(ε̂IIρ̂
(1,2))

= 1

4

⎛
⎝1 + n1 · ξ (1) + n2 · ξ (2) +

∑
i,j

ζ
f

ij ζij

⎞
⎠. (46)

In contrast to the probability wI, which is always less than
unity, probability wII could even reach the value of unity.
If the initial two-photon state is in a pure polarization state,
then the measurement does not disturb the system and so
the entropy does not change and remains equal to zero. If,
however, the initial two-photon state is in a mixed state, then
the measurement actually forces the system from an initial
finite value of the entropy to zero entropy. Accordingly, as was
the case in the previous measurement, this measurement also
has the effect of reducing the entropy of the two-photon system
after the polarization of the system has been measured.

FIG. 6. Photon reduced entropy (50) with magnitude of Eq. (53)
for ξ (2)′ . The values for ξ

(1)
3 and n3 are as follows: ξ

(1)
3 = 0.1, n3 =

−0.3 (dash-dot), single-photon entropy (12) (dash), and ξ
(1)
3 = 0.4,

n3 = −0.3 (dot), and ξ
(1)
3 = 0.8, n3 = −0.3 (space-dot).

(3) This third measurement can be performed by one
analyzer with efficiency matrix of the polarization filter ε̂III

given by

ε̂III = 1
2 (Î (1) + n · σ̂ (1)) ⊗ Î . (47)

Photon 2 get polarized by this measurement on photon 1, and
photon 2 is now described by the Stokes matrix [18]

ρ̂
′
2 = Tr(ε̂IIIρ̂

(1,2)), (48)

with Stokes parameters

ξ
(2)′
j =

[
ξ

(2)
j +

∑
i

ζij ni

]
(1 + n · ξ (1))−1. (49)

Therefore, with the aid of the expression for the entropy for
a single photon, the entropy of photon 2 becomes after the
measurement of photon 1

S(n) = ln(2) − 1
2 ln[(1 − ξ (2)′)1−ξ (2)′

(1 + ξ (2)′)1+ξ (2)′
], (50)

where the general expression for the magnitude of the Stokes
vector ξ (2)′ after the measurement is

ξ (2)′ =
√(

ξ
(2)′
1

)2 + (
ξ

(2)′
2

)2 + (
ξ

(2)′
3

)2

=
√

n2
1ζ

2
11 + n2

2ζ
2
22 + (

ξ
(2)
3 + n3ζ33

)2

1 + n3ξ
(1)
3

, (51)

where the second expression in Eq. (51) follows for the five-
parameter density matrix (18).

The analyzer ε̂III depends on the unit vector n, and the final
state of photon 2 depends also on the initial values of the Stokes

022326-6



QUANTUM ENTROPY AND POLARIZATION MEASUREMENTS … PHYSICAL REVIEW A 97, 022326 (2018)

FIG. 7. Photon reduced entropy (50) with magnitude of Eq. (54)
for ξ (2)′ . The values for ξ and n3 are as follows: ξ = 0, n3 = 0.5 (dash-
dot), single-photon entropy (12) (dash), ξ = 0.4, n3 = 0.5 (dot), and
ξ = 0.7, n3 = 0.5 (space-dot).

parameters of photons 1 and 2. In what follows, we show that
depending on the vector n and the initial states of photons 1
and 2, the effect of the measurement on photon 1 will result in
the increase or decrease of the entropy of photon 2.

A. Entropy of reduced density with only
two-photon correlations

The correlated density matrix (33) yields for the magnitude
of the Stokes vector (51)

ξ (2)′ =
√(

1 − n2
3

)
ζ 2 + n2

3ζ
2
33. (52)

Notice that Eq. (52) is an even function of n3. Figure 4 shows
the behavior of the reduced entropy S(ζ,ζ33,n3) of particle 2 for
various values of ζ33 and n3. There is both cooling (S < S1)
and heating (S > S1) of photon 2 after the measurement of
photon 1.

B. Entropy of reduced density with unequal single
correlation and two-photon correlations

The correlated density matrix (37) yields for the magnitude
of the Stokes vector (51)

ξ (2)′ = 1

1 + n3ξ
(1)
3

×
√(

1−n2
3

)(
1−ξ

(1)
3

)(
1−ξ

(2)
3

)+[
n3(ξ (1)

3 +ξ
(2)
3 −1)+ξ

(2)
3

]2
.

(53)

Note that Eq. (53) is not an even function of n3 and so negative
values may be considered. Figure 5 shows the behavior of the

FIG. 8. Photon reduced entropy (50) with magnitude of Eq. (54)
for ξ (2)′ . The values for ξ and n3 are as follows: ξ = 0, n3 = −0.7
(dash-dot), single-photon entropy (12) (dash), ξ = 0.4, n3 = −0.7
(dot), and ξ = 0.7, n3 = −0.7 (space-dot).

reduced entropy S(ξ,n3) for ξ
(1)
3 = ξ

(2)
3 = ξ as a function of ξ

for given values of n3. In this case, the entropy of photon 2,
after measurement of photon 1, exhibits cooling and heating
of the unmeasured photon 2. Figure 6 shows the case where
n3 assumes a negative value and shows considerable cooling
of the unmeasured photon 2.

C. Entropy of reduced density with equal single
correlation and two-photon correlations

The correlated density matrix (40) yields for the magnitude
of the Stokes vector (51)

ξ (2)′ =
√(

1 − n2
3

)
ζ 2 + (ξ + n3)2

1 + n3ξ
. (54)

Note that Eq. (54) is not an even function of n3 and so negative
values may be considered. Figure 7 shows the behavior of the
reduced entropy S(ζ,ξ,n3) as a function of ζ for given values of
ξ and n3. Figure 8 shows the case where n3 assumes a negative
value. In both instances, we have only cooling.

VII. SUMMARY AND DISCUSSION

We have obtained exact results for the joint von Neumann
entropy for the polarization states of a two-photon system
governed by a five-parameter polarization density matrix and
studied the sign of the quantum conditional entropy. We find
that the quantum conditional entropy may assume positive or
negative values. The latter indicates the presence of exotic
states. We have also studied the resulting reduced density
matrix of one of the photons after a measurement is performed
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on the second photon. We find a sort of heating and cooling
of the unmeasured photon where the final entropy of the
unmeasured photon has either increased or decreased. We

believe that these results may be of interest in the gen-
eral area of quantum computation and quantum information
theories.
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